
§1 DLX1 INTRO 1

June 4, 2023 at 04:40

1. Intro. This program is part of a series of “exact cover solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.1 of The Art of Computer Programming. My intent is to have
a variety of compatible programs on which I can run experiments, in order to learn how different approaches
work in practice.

Indeed, this is the first of the series. I’ve tried to write it as a primitive baseline against which I’ll be able
to measure various technical improvements and extensions. DLX1 is based on the program DANCE, which I
wrote hastily in 1999 while preparing my paper about “Dancing Links.” [See Selected Papers on Fun and
Games (2011), Chapter 38, for a revised version of that paper, which first appeared in the book Millennial
Perspectives in Computer Science, a festschrift for C. A. R. Hoare (2000).] That program, incidentally, was
based on a program called XCOVER that I first wrote in 1994. After using DANCE as a workhorse for more
than 15 years, and after extending it in dozens of ways for a wide variety of combinatorial problems, I’m
finally ready to replace it with a more carefully crafted piece of code.

My intention is to make this program match Algorithm 7.2.2.1X, so that I can use it to make the
quantitative experiments that will ultimately be reported in Volume 4B.

Although this is the entry-level program, I’m taking care to adopt conventions for input and output that
will be essentially the same (or at least backward compatible) in all of the fancier versions that are to come.

We’re given a matrix of 0s and 1s, whose columns represent “items” and whose rows represent “options.”
Some of the items are called “primary” while the others are “secondary.” Every option contains a 1 for at
least one primary item. The problem is to find all subsets of the options whose sum is (i) exactly 1 for all
primary items; (ii) at most 1 for all secondary items.

This matrix, which is typically very sparse, is specified on stdin as follows:

• Each item has a symbolic name, from one to eight characters long. Each of those characters can be any
nonblank ASCII code except for ‘:’ and ‘|’.

• The first line of input contains the names of all primary items, separated by one or more spaces, followed
by ‘|’, followed by the names of all other items. (If all items are primary, the ‘|’ may be omitted.)

• The remaining lines represent the options, by listing the items where 1 appears.

• Additionally, “comment” lines can be interspersed anywhere in the input. Such lines, which begin with
‘|’, are ignored by this program, but they are often useful within stored files.

Later versions of this program solve more general problems by making further use of the reserved characters
‘:’ and ‘|’ to allow additional kinds of input.

For example, if we consider the matrix
0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1

which was (3) in my original paper, we can name the items A, B, C, D, E, F, G. Suppose the first five are
primary, and the latter two are secondary. That matrix can be represented by the lines

| A simple example

A B C D E | F G

C E F

A D G

B C F

A D

B G

D E G

(and also in many other ways, because item names can be given in any order, and so can the individual
options). It has a unique solution, consisting of the three options A D and E F C and B G.

2 INTRO DLX1 §2

2. After this program finds all solutions, it normally prints their total number on stderr , together with
statistics about how many nodes were in the search tree, and how many “updates” were made. The running
time in “mems” is also reported, together with the approximate number of bytes needed for data storage.
One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include the time or
space needed to parse the input or to format the output.)

Here is the overall structure:

#define o mems ++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/
#define mod % /∗ used for percent signs denoting remainder in C ∗/
#define max level 10000 /∗ at most this many options in a solution ∗/
#define max cols 100000 /∗ at most this many items ∗/
#define max nodes 25000000 /∗ at most this many nonzero elements in the matrix ∗/
#define bufsize (9 ∗max cols + 3) /∗ a buffer big enough to hold all item names ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
〈Type definitions 6 〉;
〈Global variables 3 〉;
〈Subroutines 10 〉;
main (int argc , char ∗argv [])
{

register int cc , i, j, k, p, pp , q, r, t, cur node , best itm ;

〈Process the command line 4 〉;
〈 Input the item names 14 〉;
〈 Input the options 17 〉;
if (vbose & show basics) 〈Report the successful completion of the input phase 21 〉;
if (vbose & show tots) 〈Report the item totals 22 〉;
imems = mems ,mems = 0;
〈Solve the problem 23 〉;

done : if (vbose & show tots) 〈Report the item totals 22 〉;
if (vbose & show profile) 〈Print the profile 35 〉;
if (vbose & show max deg)

fprintf (stderr , "The maximum branching degree was "O"d.\n",maxdeg);
if (vbose & show basics) {

fprintf (stderr , "Altogether "O"llu solution"O"s, "O"llu+"O"llu mems,", count ,
count ≡ 1 ? "" : "s", imems ,mems);

bytes = last itm ∗ sizeof (item) + last node ∗ sizeof (node) + maxl ∗ sizeof (int);
fprintf (stderr , " "O"llu updates, "O"llu bytes, "O"llu nodes,", updates , bytes ,nodes);
fprintf (stderr , " ccost "O"lld%%.\n", (200 ∗ cmems + mems)/(2 ∗mems));

}
〈Close the files 5 〉;
}

§3 DLX1 INTRO 3

3. You can control the amount of output, as well as certain properties of the algorithm, by specifying
options on the command line:

• ‘v〈 integer 〉’ enables or disables various kinds of verbose output on stderr , given by binary codes such as
show choices ;

• ‘m〈 integer 〉’ causes every mth solution to be output (the default is m0, which merely counts them);
• ‘s〈 integer 〉’ causes the algorithm to make random choices in key places (thus providing some variety,

although the solutions are by no means uniformly random), and it also defines the seed for any random
numbers that are used;

• ‘d〈 integer 〉’ sets delta , which causes periodic state reports on stderr after the algorithm has performed
approximately delta mems since the previous report (default 10000000000);

• ‘c〈positive integer 〉’ limits the levels on which choices are shown during verbose tracing;
• ‘C〈positive integer 〉’ limits the levels on which choices are shown in the periodic state reports;
• ‘l〈nonnegative integer 〉’ gives a lower limit, relative to the maximum level so far achieved, to the levels

on which choices are shown during verbose tracing;
• ‘t〈positive integer 〉’ causes the program to stop after this many solutions have been found;
• ‘T〈 integer 〉’ sets timeout (which causes abrupt termination if mems > timeout at the beginning of a level);
• ‘S〈filename 〉’ to output a “shape file” that encodes the search tree.

#define show basics 1 /∗ vbose code for basic stats; this is the default ∗/
#define show choices 2 /∗ vbose code for backtrack logging ∗/
#define show details 4 /∗ vbose code for further commentary ∗/
#define show profile 128 /∗ vbose code to show the search tree profile ∗/
#define show full state 256 /∗ vbose code for complete state reports ∗/
#define show tots 512 /∗ vbose code for reporting item totals at start and end ∗/
#define show warnings 1024 /∗ vbose code for reporting options without primaries ∗/
#define show max deg 2048 /∗ vbose code for reporting maximum branching degree ∗/
〈Global variables 3 〉 ≡

int random seed = 0; /∗ seed for the random words of gb rand ∗/
int randomizing ; /∗ has ‘s’ been specified? ∗/
int vbose = show basics + show warnings ; /∗ level of verbosity ∗/
int spacing ; /∗ solution k is output if k is a multiple of spacing ∗/
int show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int show choices gap = 1000000; /∗ below level maxl − show choices gap , show details is ignored ∗/
int show levels max = 1000000; /∗ above this level, state reports stop ∗/
int maxl = 0; /∗ maximum level actually reached ∗/
char buf [bufsize]; /∗ input buffer ∗/
ullng count ; /∗ solutions found so far ∗/
ullng options ; /∗ options seen so far ∗/
ullng imems , mems , cmems , tmems ; /∗ mem counts ∗/
ullng updates ; /∗ update counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ total number of branch nodes initiated ∗/
ullng thresh = 10000000000; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 10000000000; /∗ report every delta or so mems ∗/
ullng maxcount = #ffffffffffffffff; /∗ stop after finding this many solutions ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/
FILE ∗shape file ; /∗ file for optional output of search tree shape ∗/
char ∗shape name ; /∗ its name ∗/
int maxdeg ; /∗ the largest branching degree seen so far ∗/

See also sections 8 and 24.

This code is used in section 2.

4 INTRO DLX1 §4

4. If an option appears more than once on the command line, the first appearance takes precedence.

〈Process the command line 4 〉 ≡
for (j = argc − 1, k = 0; j; j−−)

switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&vbose)− 1); break;
case ’m’: k |= (sscanf (argv [j] + 1, ""O"d",&spacing)− 1); break;
case ’s’: k |= (sscanf (argv [j] + 1, ""O"d",&random seed)− 1), randomizing = 1; break;
case ’d’: k |= (sscanf (argv [j] + 1, ""O"lld",&delta)− 1), thresh = delta ; break;
case ’c’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices max)− 1); break;
case ’C’: k |= (sscanf (argv [j] + 1, ""O"d",&show levels max)− 1); break;
case ’l’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices gap)− 1); break;
case ’t’: k |= (sscanf (argv [j] + 1, ""O"lld",&maxcount)− 1); break;
case ’T’: k |= (sscanf (argv [j] + 1, ""O"lld",&timeout)− 1); break;
case ’S’: shape name = argv [j] + 1, shape file = fopen (shape name , "w");

if (¬shape file)
fprintf (stderr , "Sorry, I can’t open file ‘"O"s’ for writing!\n", shape name);

break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k) {
fprintf (stderr , "Usage: "O"s [v<n>] [m<n>] [s<n>] [d<n>]"" [c<n>] [C<n>] [l<n\

>] [t<n>] [T<n>] [S<bar>] < foo.dlx\n", argv [0]);
exit (−1);
}
if (randomizing) gb init rand (random seed);

This code is used in section 2.

5. 〈Close the files 5 〉 ≡
if (shape file) fclose (shape file);

This code is used in section 2.

§6 DLX1 DATA STRUCTURES 5

6. Data structures. Each item of the input matrix is represented by an item struct, and each option
is represented as a list of node structs. There’s one node for each nonzero entry in the matrix.

More precisely, the nodes of individual options appear sequentially, with “spacer” nodes between them.
The nodes are also linked circularly with respect to each item, in doubly linked lists. The item lists each
include a header node, but the option lists do not. Item header nodes are aligned with an item struct, which
contains further info about the item.

Each node contains three important fields. Two are the pointers up and down of doubly linked lists,
already mentioned. The third points directly to the item containing the node.

A “pointer” is an array index, not a C reference (because the latter would occupy 64 bits and waste cache
space). The cl array is for item structs, and the nd array is for nodes. I assume that both of those arrays
are small enough to be allocated statically. (Modifications of this program could do dynamic allocation if
needed.) The header node corresponding to cl [c] is nd [c].

We count one mem for a simultaneous access to the up and down fields. I’ve added a spare field, so that
each node occupies two octabytes.

Although the item-list pointers are called up and down , they need not correspond to actual positions
of matrix entries. The elements of each item list can appear in any order, so that one option needn’t be
consistently “above” or “below” another. Indeed, when randomizing is set, we intentionally scramble each
item list.

This program doesn’t change the itm fields after they’ve first been set up. But the up and down fields
will be changed frequently, although preserving relative order.

Exception: In the node nd [c] that is the header for the list of item c, we use the itm field to hold the
length of that list (excluding the header node itself). We also might use its spare field for special purposes.
The alternative names len for itm and aux for spare are used in the code so that this nonstandard semantics
will be more clear.

A spacer node has itm ≤ 0. Its up field points to the start of the preceding option; its down field points
to the end of the following option. Thus it’s easy to traverse an option circularly, in either direction.

If all options have length m, we can do without the spacers by simply working modulo m. But the majority
of my applications have options of variable length, so I’ve decided not to use that trick.

[Historical note: An earlier version of this program, DLX0, was almost identical to this one except that it
used doubly linked lists for the options as well as for the items. Thus it had two additional fields, left and
right , in each node. When I wrote DLX1 I expected it to be a big improvement, because I thought there
would be fewer memory accesses in all of the inner loops where options are being traversed. However, I failed
to realize that the itm and right fields were both stored in the same octabyte; hence the cost per node is
the same—and DLX1 actually performs a few more mems, as it handles the spacer node transitions! This
additional mem cost is compensated by the smaller node size, hence greater likelihood of cache hits. But
the gain from pure sequential allocation wasn’t as great as I’d hoped.]

#define len itm /∗ item list length (used in header nodes only) ∗/
#define aux spare /∗ an auxiliary quantity (used in header nodes only) ∗/
〈Type definitions 6 〉 ≡

typedef struct node struct {
int up , down ; /∗ predecessor and successor in item list ∗/
int itm ; /∗ the item containing this node ∗/
int spare ; /∗ padding, not used in DLX1 ∗/
} node;

See also section 7.

This code is used in section 2.

6 DATA STRUCTURES DLX1 §7

7. Each item struct contains three fields: The name is the user-specified identifier; next and prev point
to adjacent items, when this item is part of a doubly linked list.

As backtracking proceeds, nodes will be deleted from item lists when their option has been hidden by other
options in the partial solution. But when backtracking is complete, the data structures will be restored to
their original state.

We count one mem for a simultaneous access to the prev and next fields.

〈Type definitions 6 〉 +≡
typedef struct itm struct {

char name [8]; /∗ symbolic identification of the item, for printing ∗/
int prev , next ; /∗ neighbors of this item ∗/
} item;

8. 〈Global variables 3 〉 +≡
node nd [max nodes]; /∗ the master list of nodes ∗/
int last node ; /∗ the first node in nd that’s not yet used ∗/
item cl [max cols + 2]; /∗ the master list of items ∗/
int second = max cols ; /∗ boundary between primary and secondary items ∗/
int last itm ; /∗ the first item in cl that’s not yet used ∗/

9. One item struct is called the root. It serves as the head of the list of items that need to be covered,
and is identifiable by the fact that its name is empty.

#define root 0 /∗ cl [root] is the gateway to the unsettled items ∗/

§10 DLX1 DATA STRUCTURES 7

10. An option is identified not by name but by the names of the items it contains. Here is a routine that
prints an option, given a pointer to any of its nodes. It also prints the position of the option in its item list.

〈Subroutines 10 〉 ≡
void print option (int p,FILE ∗stream)
{

register int k, q;

if (p < last itm ∨ p ≥ last node ∨ nd [p].itm ≤ 0) {
fprintf (stderr , "Illegal option "O"d!\n", p);
return;

}
for (q = p; ;) {

fprintf (stream , " "O".8s", cl [nd [q].itm].name);
q++;
if (nd [q].itm ≤ 0) q = nd [q].up ; /∗ −nd [q].itm is actually the option number ∗/
if (q ≡ p) break;

}
for (q = nd [nd [p].itm].down , k = 1; q 6= p; k++) {

if (q ≡ nd [p].itm) {
fprintf (stream , " (?)\n"); return; /∗ option not in its item list! ∗/

} else q = nd [q].down ;
}
fprintf (stream , " ("O"d of "O"d)\n", k,nd [nd [p].itm].len);
}
void prow (int p)
{

print option (p, stderr);
}

See also sections 11, 12, 26, 27, 33, and 34.

This code is used in section 2.

11. When I’m debugging, I might want to look at one of the current item lists.

〈Subroutines 10 〉 +≡
void print itm (int c)
{

register int p;

if (c < root ∨ c ≥ last itm) {
fprintf (stderr , "Illegal item "O"d!\n", c);
return;

}
if (c < second)

fprintf (stderr , "Item "O".8s, length "O"d, neighbors "O".8s and "O".8s:\n", cl [c].name ,
nd [c].len , cl [cl [c].prev].name , cl [cl [c].next].name);

else fprintf (stderr , "Item "O".8s, length "O"d:\n", cl [c].name ,nd [c].len);
for (p = nd [c].down ; p ≥ last itm ; p = nd [p].down) prow (p);
}

8 DATA STRUCTURES DLX1 §12

12. Speaking of debugging, here’s a routine to check if redundant parts of our data structure have gone
awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
〈Subroutines 10 〉 +≡

void sanity (void)
{

register int k, p, q, pp , qq , t;

for (q = root , p = cl [q].next ; ; q = p, p = cl [p].next) {
if (cl [p].prev 6= q) fprintf (stderr , "Bad prev field at itm "O".8s!\n", cl [p].name);
if (p ≡ root) break;
〈Check item p 13 〉;

}
}

13. 〈Check item p 13 〉 ≡
for (qq = p, pp = nd [qq].down , k = 0; ; qq = pp , pp = nd [pp].down , k++) {

if (nd [pp].up 6= qq) fprintf (stderr , "Bad up field at node "O"d!\n", pp);
if (pp ≡ p) break;
if (nd [pp].itm 6= p) fprintf (stderr , "Bad itm field at node "O"d!\n", pp);
}
if (nd [p].len 6= k) fprintf (stderr , "Bad len field in item "O".8s!\n", cl [p].name);

This code is used in section 12.

§14 DLX1 INPUTTING THE MATRIX 9

14. Inputting the matrix. Brute force is the rule in this part of the code, whose goal is to parse and
store the input data and to check its validity.

#define panic(m)
{ fprintf (stderr , ""O"s!\n"O"d: "O".99s\n",m, p, buf); exit (−666); }

〈 Input the item names 14 〉 ≡
if (max nodes ≤ 2 ∗max cols) {

fprintf (stderr , "Recompile me: max_nodes must exceed twice max_cols!\n");
exit (−999);
} /∗ every item will want a header node and at least one other node ∗/
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Input line way too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
last itm = 1;
break;
}
if (¬last itm) panic("No items");
for (; o, buf [p];) {

for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])); j++) {
if (buf [p + j] ≡ ’:’ ∨ buf [p + j] ≡ ’|’) panic("Illegal character in item name");
o, cl [last itm].name [j] = buf [p + j];

}
if (j ≡ 8 ∧ ¬isspace (buf [p + j])) panic("Item name too long");
〈Check for duplicate item name 15 〉;
〈 Initialize last itm to a new item with an empty list 16 〉;
for (p += j + 1; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’) {

if (second 6= max cols) panic("Item name line contains | twice");
second = last itm ;
for (p++; o, isspace (buf [p]); p++) ;

}
}
if (second ≡ max cols) second = last itm ;
oo , cl [last itm].prev = last itm − 1, cl [last itm − 1].next = last itm ;
oo , cl [second].prev = last itm , cl [last itm].next = second ;
/∗ this sequence works properly whether or not second = last itm ∗/

oo , cl [root].prev = second − 1, cl [second − 1].next = root ;
last node = last itm ; /∗ reserve all the header nodes and the first spacer ∗/
/∗ we have nd [last node].itm = 0 in the first spacer ∗/

This code is used in section 2.

15. 〈Check for duplicate item name 15 〉 ≡
for (k = 1; o, strncmp(cl [k].name , cl [last itm].name , 8); k++) ;
if (k < last itm) panic("Duplicate item name");

This code is used in section 14.

10 INPUTTING THE MATRIX DLX1 §16

16. 〈 Initialize last itm to a new item with an empty list 16 〉 ≡
if (last itm > max cols) panic("Too many items");
oo , cl [last itm − 1].next = last itm , cl [last itm].prev = last itm − 1; /∗ nd [last itm].len = 0 ∗/
o,nd [last itm].up = nd [last itm].down = last itm ;
last itm ++;

This code is used in section 14.

17. I’m putting the option number into the spacer that follows it, as a possible debugging aid. But the
program doesn’t currently use that information.

〈 Input the options 17 〉 ≡
while (1) {

if (¬fgets (buf , bufsize , stdin)) break;
if (o, buf [p = strlen (buf)− 1] 6= ’\n’) panic("Option line too long");
for (p = 0; o, isspace (buf [p]); p++) ;
if (buf [p] ≡ ’|’ ∨ ¬buf [p]) continue; /∗ bypass comment or blank line ∗/
i = last node ; /∗ remember the spacer at the left of this option ∗/
for (pp = 0; buf [p];) {

for (j = 0; j < 8 ∧ (o,¬isspace (buf [p + j])); j++) o, cl [last itm].name [j] = buf [p + j];
if (j ≡ 8 ∧ ¬isspace (buf [p + j])) panic("Item name too long");
if (j < 8) o, cl [last itm].name [j] = ’\0’;
〈Create a node for the item named in buf [p] 18 〉;
for (p += j + 1; o, isspace (buf [p]); p++) ;

}
if (¬pp) {

if (vbose & show warnings) fprintf (stderr , "Option ignored (no primary items): "O"s", buf);
while (last node > i) {
〈Remove last node from its item list 20 〉;
last node −−;

}
} else {
o,nd [i].down = last node ;
last node ++; /∗ create the next spacer ∗/
if (last node ≡ max nodes) panic("Too many nodes");
options ++;
o,nd [last node].up = i + 1;
o,nd [last node].itm = −options ;

}
}

This code is used in section 2.

18. 〈Create a node for the item named in buf [p] 18 〉 ≡
for (k = 0; o, strncmp(cl [k].name , cl [last itm].name , 8); k++) ;
if (k ≡ last itm) panic("Unknown item name");
if (o,nd [k].aux ≥ i) panic("Duplicate item name in this option");
last node ++;
if (last node ≡ max nodes) panic("Too many nodes");
o,nd [last node].itm = k;
if (k < second) pp = 1;
o, t = nd [k].len + 1;
〈 Insert node last node into the list for item k 19 〉;

This code is used in section 17.

§19 DLX1 INPUTTING THE MATRIX 11

19. Insertion of a new node is simple, unless we’re randomizing. In the latter case, we want to put the
node into a random position of the list.

We store the position of the new node into nd [k].aux , so that the test for duplicate items above will be
correct.

As in other programs developed for TAOCP, I assume that four mems are consumed when 31 random bits
are being generated by any of the GB FLIP routines.

〈 Insert node last node into the list for item k 19 〉 ≡
o,nd [k].len = t; /∗ store the new length of the list ∗/
nd [k].aux = last node ; /∗ no mem charge for aux after len ∗/
if (¬randomizing) {
o, r = nd [k].up ; /∗ the “bottom” node of the item list ∗/
ooo ,nd [r].down = nd [k].up = last node ,nd [last node].up = r,nd [last node].down = k;
} else {

mems += 4, t = gb unif rand (t); /∗ choose a random number of nodes to skip past ∗/
for (o, r = k; t; o, r = nd [r].down , t−−) ;
ooo , q = nd [r].up ,nd [q].down = nd [r].up = last node ;
o,nd [last node].up = q,nd [last node].down = r;
}

This code is used in section 18.

20. 〈Remove last node from its item list 20 〉 ≡
o, k = nd [last node].itm ;
oo ,nd [k].len −−,nd [k].aux = i− 1;
o, q = nd [last node].up , r = nd [last node].down ;
oo ,nd [q].down = r,nd [r].up = q;

This code is used in section 17.

21. 〈Report the successful completion of the input phase 21 〉 ≡
fprintf (stderr , "("O"lld options, "O"d+"O"d items, "O"d entries successfully read)\n",

options , second − 1, last itm − second , last node − last itm);

This code is used in section 2.

22. The item lengths after input should agree with the item lengths after this program has finished. I
print them (on request), in order to provide some reassurance that the algorithm isn’t badly screwed up.

〈Report the item totals 22 〉 ≡
{

fprintf (stderr , "Item totals:");
for (k = 1; k < last itm ; k++) {

if (k ≡ second) fprintf (stderr , " |");
fprintf (stderr , " "O"d",nd [k].len);

}
fprintf (stderr , "\n");
}

This code is used in section 2.

12 THE DANCING DLX1 §23

23. The dancing. Our strategy for generating all exact covers will be to repeatedly choose always the
item that appears to be hardest to cover, namely the item with shortest list, from all items that still need
to be covered. And we explore all possibilities via depth-first search.

The neat part of this algorithm is the way the lists are maintained. Depth-first search means last-in-first-
out maintenance of data structures; and it turns out that we need no auxiliary tables to undelete elements
from lists when backing up. The nodes removed from doubly linked lists remember their former neighbors,
because we do no garbage collection.

The basic operation is “covering an item.” This means removing it from the list of items needing to be
covered, and “hiding” its options: removing nodes from other lists whenever they belong to an option of a
node in this item’s list.

〈Solve the problem 23 〉 ≡
level = 0;

forward : nodes ++;
if (vbose & show profile) profile [level]++;
if (sanity checking) sanity ();
〈Do special things if enough mems have accumulated 25 〉;
〈Set best itm to the best item for branching 30 〉;
cover (best itm);
oo , cur node = choice [level] = nd [best itm].down ;

advance : if (cur node ≡ best itm) goto backup ;
if ((vbose & show choices) ∧ level < show choices max) {

fprintf (stderr , "L"O"d:", level);
print option (cur node , stderr);
}
〈Cover all other items of cur node 28 〉;
if (o, cl [root].next ≡ root) 〈Visit a solution and goto recover 31 〉;
if (++level > maxl) {

if (level ≥ max level) {
fprintf (stderr , "Too many levels!\n");
exit (−4);

}
maxl = level ;
}
goto forward ;

backup : uncover (best itm);
if (level ≡ 0) goto done ;
level −−;
oo , cur node = choice [level], best itm = nd [cur node].itm ;

recover : 〈Uncover all other items of cur node 29 〉;
oo , cur node = choice [level] = nd [cur node].down ; goto advance ;

This code is used in section 2.

24. 〈Global variables 3 〉 +≡
int level ; /∗ number of choices in current partial solution ∗/
int choice [max level]; /∗ the node chosen on each level ∗/
ullng profile [max level]; /∗ number of search tree nodes on each level ∗/

§25 DLX1 THE DANCING 13

25. 〈Do special things if enough mems have accumulated 25 〉 ≡
if (delta ∧ (mems ≥ thresh)) {

thresh += delta ;
if (vbose & show full state) print state ();
else print progress ();
}
if (mems ≥ timeout) {

fprintf (stderr , "TIMEOUT!\n"); goto done ;
}

This code is used in section 23.

26. When an option is hidden, it leaves all lists except the list of the item that is being covered. Thus a
node is never removed from a list twice.

Note: I could have saved some mems in this routine, and in similar routines below, by not updating the len
fields of secondary items. But I chose not to make such an optimization because it might well be misleading:
The insertion of a mem-free new branch ‘if (cc < second)’ can be costly since it makes hardware branch
prediction less effective. Furthermore those len fields are in item header nodes, which tend to remain in
cache memory where they’re readily accessible.

〈Subroutines 10 〉 +≡
void cover (int c)
{

register int cc , l, r, rr , nn , uu , dd , t;

o, l = cl [c].prev , r = cl [c].next ;
oo , cl [l].next = r, cl [r].prev = l;
updates ++;
for (o, rr = nd [c].down ; rr ≥ last itm ; o, rr = nd [rr].down)

for (nn = rr + 1; nn 6= rr ;) {
o, uu = nd [nn].up , dd = nd [nn].down ;
o, cc = nd [nn].itm ;
if (cc ≤ 0) {

nn = uu ;
continue;
}
oo ,nd [uu].down = dd ,nd [dd].up = uu ;
updates ++;
o, t = nd [cc].len − 1;
o,nd [cc].len = t;
nn ++;

}
}

14 THE DANCING DLX1 §27

27. I used to think that it was important to uncover an item by processing its options from bottom to top,
since covering was done from top to bottom. But while writing this program I realized that, amazingly, no
harm is done if the options are processed again in the same order. So I’ll go downward again, just to prove
the point. Whether we go up or down, the pointers execute an exquisitely choreographed dance that returns
them almost magically to their former state.

〈Subroutines 10 〉 +≡
void uncover (int c)
{

register int cc , l, r, rr , nn , uu , dd , t;

for (o, rr = nd [c].down ; rr ≥ last itm ; o, rr = nd [rr].down)
for (nn = rr + 1; nn 6= rr ;) {

o, uu = nd [nn].up , dd = nd [nn].down ;
o, cc = nd [nn].itm ;
if (cc ≤ 0) {

nn = uu ;
continue;
}
oo ,nd [uu].down = nd [dd].up = nn ;
o, t = nd [cc].len + 1;
o,nd [cc].len = t;
nn ++;

}
o, l = cl [c].prev , r = cl [c].next ;
oo , cl [l].next = cl [r].prev = c;
}

28. 〈Cover all other items of cur node 28 〉 ≡
for (pp = cur node + 1; pp 6= cur node ;) {
o, cc = nd [pp].itm ;
if (cc ≤ 0) o, pp = nd [pp].up ;
else cover (cc), pp ++;
}

This code is used in section 23.

29. When I learned that the covering of individual items can be done safely in various orders, I almost
convinced myself that I’d be able to blithely ignore the ordering—I could apparently undo the covering of
item a then b by uncovering a first. However, that argument is fallacious: When a is uncovered, it can
resuscitate elements in item b that would mess up the uncovering of b. The choreography is delicate indeed.

(Incidentally, the cover and uncover routines both went to the right. That was okay. But we must then
go left here.)

〈Uncover all other items of cur node 29 〉 ≡
for (pp = cur node − 1; pp 6= cur node ;) {
o, cc = nd [pp].itm ;
if (cc ≤ 0) o, pp = nd [pp].down ;
else uncover (cc), pp −−;
}

This code is used in section 23.

§30 DLX1 THE DANCING 15

30. The “best item” is considered to be an item that minimizes the number of remaining choices. If there
are several candidates, we choose the leftmost — unless we’re randomizing, in which case we select one of
them at random.

〈Set best itm to the best item for branching 30 〉 ≡
tmems = mems , t = max nodes ;
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap)

fprintf (stderr , "Level "O"d:", level);
for (o, k = cl [root].next ; t ∧ k 6= root ; o, k = cl [k].next) {

if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap)
fprintf (stderr , " "O".8s("O"d)", cl [k].name ,nd [k].len);

if (o,nd [k].len ≤ t) {
if (nd [k].len < t) best itm = k, t = nd [k].len , p = 1;
else {
p++; /∗ this many items achieve the min ∗/
if (randomizing ∧ (mems += 4,¬gb unif rand (p))) best itm = k;

}
}
}
if ((vbose & show details) ∧ level < show choices max ∧ level ≥ maxl − show choices gap)

fprintf (stderr , " branching on "O".8s("O"d)\n", cl [best itm].name , t);
if (t > maxdeg) maxdeg = t;
if (shape file) {

fprintf (shape file , ""O"d "O".8s\n", t, cl [best itm].name);
fflush (shape file);
}
cmems += mems − tmems ;

This code is used in section 23.

31. 〈Visit a solution and goto recover 31 〉 ≡
{

nodes ++; /∗ a solution is a special node, see 7.2.2–(4) ∗/
if (level + 1 > maxl) {

if (level + 1 ≥ max level) {
fprintf (stderr , "Too many levels!\n");
exit (−5);

}
maxl = level + 1;

}
if (vbose & show profile) profile [level + 1]++;
if (shape file) {

fprintf (shape file , "sol\n"); fflush (shape file);
}
〈Record solution and goto recover 32 〉;
}

This code is used in section 23.

16 THE DANCING DLX1 §32

32. 〈Record solution and goto recover 32 〉 ≡
{

count ++;
if (spacing ∧ (count mod spacing ≡ 0)) {

printf (""O"lld:\n", count);
for (k = 0; k ≤ level ; k++) print option (choice [k], stdout);
fflush (stdout);

}
if (count ≥ maxcount) goto done ;
goto recover ;
}

This code is used in section 31.

33. 〈Subroutines 10 〉 +≡
void print state (void)
{

register int l;

fprintf (stderr , "Current state (level "O"d):\n", level);
for (l = 0; l < level ; l++) {

print option (choice [l], stderr);
if (l ≥ show levels max) {

fprintf (stderr , " ...\n");
break;

}
}
fprintf (stderr , " "O"lld solutions, "O"lld mems, and max level "O"d so far.\n", count ,

mems ,maxl);
}

§34 DLX1 THE DANCING 17

34. During a long run, it’s helpful to have some way to measure progress. The following routine prints a
string that indicates roughly where we are in the search tree. The string consists of character pairs, separated
by blanks, where each character pair represents a branch of the search tree. When a node has d descendants
and we are working on the kth, the two characters respectively represent k and d in a simple code; namely,
the values 0, 1, . . . , 61 are denoted by

0, 1, . . . , 9, a, b, . . . , z, A, B, . . . , Z.

All values greater than 61 are shown as ‘*’. Notice that as computation proceeds, this string will increase
lexicographically.

Following that string, a fractional estimate of total progress is computed, based on the näıve assumption
that the search tree has a uniform branching structure. If the tree consists of a single node, this estimate
is .5; otherwise, if the first choice is ‘k of d’, the estimate is (k−1)/d plus 1/d times the recursively evaluated
estimate for the kth subtree. (This estimate might obviously be very misleading, in some cases, but at least
it tends to grow monotonically.)

〈Subroutines 10 〉 +≡
void print progress (void)
{

register int l, k, d, c, p;
register double f, fd ;

fprintf (stderr , " after "O"lld mems: "O"lld sols,",mems , count);
for (f = 0.0, fd = 1.0, l = 0; l < level ; l++) {
c = nd [choice [l]].itm , d = nd [c].len ;
for (k = 1, p = nd [c].down ; p 6= choice [l]; k++, p = nd [p].down) ;
fd ∗= d, f += (k − 1)/fd ; /∗ choice l is k of d ∗/
fprintf (stderr , " "O"c"O"c", k < 10 ? ’0’ + k : k < 36 ? ’a’ + k − 10 : k < 62 ? ’A’ + k − 36 : ’*’,

d < 10 ? ’0’ + d : d < 36 ? ’a’ + d− 10 : d < 62 ? ’A’ + d− 36 : ’*’);
if (l ≥ show levels max) {

fprintf (stderr , "...");
break;

}
}
fprintf (stderr , " "O".5f\n", f + 0.5/fd);
}

35. 〈Print the profile 35 〉 ≡
{

fprintf (stderr , "Profile:\n");
for (level = 0; level ≤ maxl ; level ++) fprintf (stderr , ""O"3d: "O"lld\n", level , profile [level]);
}

This code is used in section 2.

18 INDEX DLX1 §36

36. Index.

advance : 23.
argc : 2, 4.
argv : 2, 4.
aux : 6, 18, 19, 20.
backup : 23.
best itm : 2, 23, 30.
buf : 3, 14, 17.
bufsize : 2, 3, 14, 17.
bytes : 2, 3.
c: 11, 26, 27, 34.
cc : 2, 26, 27, 28, 29.
choice : 23, 24, 32, 33, 34.
cl : 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

23, 26, 27, 30.
cmems : 2, 3, 30.
count : 2, 3, 32, 33, 34.
cover : 23, 26, 28, 29.
cur node : 2, 23, 28, 29.
d: 34.
dd : 26, 27.
delta : 3, 4, 25.
done : 2, 23, 25, 32.
down : 6, 10, 11, 13, 16, 17, 19, 20, 23, 26,

27, 29, 34.
exit : 4, 14, 23, 31.
f : 34.
fclose : 5.
fd : 34.
fflush : 30, 31, 32.
fgets : 14, 17.
fopen : 4.
forward : 23.
fprintf : 2, 4, 10, 11, 12, 13, 14, 17, 21, 22, 23,

25, 30, 31, 33, 34, 35.
gb init rand : 4.
gb rand : 3.
gb unif rand : 19, 30.
i: 2.
imems : 2, 3.
isspace : 14, 17.
item: 2, 7, 8, 9.
itm : 6, 10, 13, 14, 17, 18, 20, 23, 26, 27, 28, 29, 34.
itm struct: 7.
j: 2.
k: 2, 10, 12, 34.
l: 26, 27, 33, 34.
last itm : 2, 8, 10, 11, 14, 15, 16, 17, 18, 21,

22, 26, 27.
last node : 2, 8, 10, 14, 17, 18, 19, 20, 21.
left : 6.
len : 6, 10, 11, 13, 16, 18, 19, 20, 22, 26, 27, 30, 34.

level : 23, 24, 30, 31, 32, 33, 34, 35.
main : 2.
max cols : 2, 8, 14, 16.
max level : 2, 23, 24, 31.
max nodes : 2, 8, 14, 17, 18, 30.
maxcount : 3, 4, 32.
maxdeg : 2, 3, 30.
maxl : 2, 3, 23, 30, 31, 33, 35.
mems : 2, 3, 19, 25, 30, 33, 34.
mod: 2, 32.
name : 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 30.
nd : 6, 8, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22,

23, 26, 27, 28, 29, 30, 34.
next : 7, 11, 12, 14, 16, 23, 26, 27, 30.
nn : 26, 27.
node: 2, 6, 8.
node struct: 6.
nodes : 2, 3, 23, 31.
O: 2.
o: 2.
oo : 2, 14, 16, 20, 23, 26, 27.
ooo : 2, 19.
options : 3, 17, 21.
p: 2, 10, 11, 12, 34.
panic : 14, 15, 16, 17, 18.
pp : 2, 12, 13, 17, 18, 28, 29.
prev : 7, 11, 12, 14, 16, 26, 27.
print itm : 11.
print option : 10, 23, 32, 33.
print progress : 25, 34.
print state : 25, 33.
printf : 32.
profile : 23, 24, 31, 35.
prow : 10, 11.
q: 2, 10, 12.
qq : 12, 13.
r: 2, 26, 27.
random seed : 3, 4.
randomizing : 3, 4, 6, 19, 30.
recover : 23, 32.
right : 6.
root : 9, 11, 12, 14, 23, 30.
rr : 26, 27.
sanity : 12, 23.
sanity checking : 12, 23.
second : 8, 11, 14, 18, 21, 22, 26.
shape file : 3, 4, 5, 30, 31.
shape name : 3, 4.
show basics : 2, 3.
show choices : 3, 23.
show choices gap : 3, 4, 30.

§36 DLX1 INDEX 19

show choices max : 3, 4, 23, 30.
show details : 3, 30.
show full state : 3, 25.
show levels max : 3, 4, 33, 34.
show max deg : 2, 3.
show profile : 2, 3, 23, 31.
show tots : 2, 3.
show warnings : 3, 17.
spacing : 3, 4, 32.
spare : 6.
sscanf : 4.
stderr : 2, 3, 4, 10, 11, 12, 13, 14, 17, 21, 22,

23, 25, 30, 31, 33, 34, 35.
stdin : 1, 14, 17.
stdout : 32.
stream : 10.
strlen : 14, 17.
strncmp : 15, 18.
t: 2, 12, 26, 27.
thresh : 3, 4, 25.
timeout : 3, 4, 25.
tmems : 3, 30.
uint: 2.
ullng: 2, 3, 24.
uncover : 23, 27, 29.
up : 6, 10, 13, 16, 17, 19, 20, 26, 27, 28.
updates : 2, 3, 26.
uu : 26, 27.
vbose : 2, 3, 4, 17, 23, 25, 30, 31.

20 NAMES OF THE SECTIONS DLX1

〈Check for duplicate item name 15 〉 Used in section 14.

〈Check item p 13 〉 Used in section 12.

〈Close the files 5 〉 Used in section 2.

〈Cover all other items of cur node 28 〉 Used in section 23.

〈Create a node for the item named in buf [p] 18 〉 Used in section 17.

〈Do special things if enough mems have accumulated 25 〉 Used in section 23.

〈Global variables 3, 8, 24 〉 Used in section 2.

〈 Initialize last itm to a new item with an empty list 16 〉 Used in section 14.

〈 Input the item names 14 〉 Used in section 2.

〈 Input the options 17 〉 Used in section 2.

〈 Insert node last node into the list for item k 19 〉 Used in section 18.

〈Print the profile 35 〉 Used in section 2.

〈Process the command line 4 〉 Used in section 2.

〈Record solution and goto recover 32 〉 Used in section 31.

〈Remove last node from its item list 20 〉 Used in section 17.

〈Report the item totals 22 〉 Used in section 2.

〈Report the successful completion of the input phase 21 〉 Used in section 2.

〈Set best itm to the best item for branching 30 〉 Used in section 23.

〈Solve the problem 23 〉 Used in section 2.

〈Subroutines 10, 11, 12, 26, 27, 33, 34 〉 Used in section 2.

〈Type definitions 6, 7 〉 Used in section 2.

〈Uncover all other items of cur node 29 〉 Used in section 23.

〈Visit a solution and goto recover 31 〉 Used in section 23.

DLX1

Section Page
Intro . 1 1
Data structures . 6 5
Inputting the matrix . 14 9
The dancing . 23 12
Index . 36 18

	Intro
	Data structures
	Inputting the matrix
	The dancing
	Index
	Names of the sections
	Check for duplicate item name
	Check item p
	Close the files
	Cover all other items of cur_node
	Create a node for the item named in buf[p]
	Do special things if enough mems have accumulated
	Global variables
	Initialize last_itm to a new item with an empty list
	Input the item names
	Input the options
	Insert node last_node into the list for item k
	Print the profile
	Process the command line
	Record solution and goto recover
	Remove last_node from its item list
	Report the item totals
	Report the successful completion of the input phase
	Set best_itm to the best item for branching
	Solve the problem
	Subroutines
	Type definitions
	Uncover all other items of cur_node
	Visit a solution and goto recover

