June 4, 2023 at 04:40

1. Intro. This program is part of a series of "exact cover solvers" that I'm putting together for my own education as I prepare to write Section 7.2.2.1 of The Art of Computer Programming. My intent is to have a variety of compatible programs on which I can run experiments, in order to learn how different approaches work in practice.

Indeed, this is the first of the series. I've tried to write it as a primitive baseline against which I'll be able to measure various technical improvements and extensions. DLX1 is based on the program DANCE, which I wrote hastily in 1999 while preparing my paper about "Dancing Links." [See Selected Papers on Fun and Games (2011), Chapter 38, for a revised version of that paper, which first appeared in the book Millennial Perspectives in Computer Science, a festschrift for C. A. R. Hoare (2000).] That program, incidentally, was based on a program called XCOVER that I first wrote in 1994. After using DANCE as a workhorse for more than 15 years, and after extending it in dozens of ways for a wide variety of combinatorial problems, I'm finally ready to replace it with a more carefully crafted piece of code.

My intention is to make this program match Algorithm 7.2.2.1X, so that I can use it to make the quantitative experiments that will ultimately be reported in Volume 4B.

Although this is the entry-level program, I'm taking care to adopt conventions for input and output that will be essentially the same (or at least backward compatible) in all of the fancier versions that are to come.

We're given a matrix of 0 s and 1 s , whose columns represent "items" and whose rows represent "options." Some of the items are called "primary" while the others are "secondary." Every option contains a 1 for at least one primary item. The problem is to find all subsets of the options whose sum is (i) exactly 1 for all primary items; (ii) at most 1 for all secondary items.

This matrix, which is typically very sparse, is specified on stdin as follows:

- Each item has a symbolic name, from one to eight characters long. Each of those characters can be any nonblank ASCII code except for ':' and ' I '.
- The first line of input contains the names of all primary items, separated by one or more spaces, followed by ' l ', followed by the names of all other items. (If all items are primary, the ' l ' may be omitted.)
- The remaining lines represent the options, by listing the items where 1 appears.
- Additionally, "comment" lines can be interspersed anywhere in the input. Such lines, which begin with 'I', are ignored by this program, but they are often useful within stored files.
Later versions of this program solve more general problems by making further use of the reserved characters ' $:$ ' and ' I ' to allow additional kinds of input.
For example, if we consider the matrix

$$
\left(\begin{array}{lllllll}
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

which was (3) in my original paper, we can name the items A, B, C, D, E, F, G. Suppose the first five are primary, and the latter two are secondary. That matrix can be represented by the lines
I A simple example
A B C D E | F G
C E F
A D G
B C F
A D
B G
D E G
(and also in many other ways, because item names can be given in any order, and so can the individual options). It has a unique solution, consisting of the three options A D and E F C and B G.

2．After this program finds all solutions，it normally prints their total number on stderr，together with statistics about how many nodes were in the search tree，and how many＂updates＂were made．The running time in＂mems＂is also reported，together with the approximate number of bytes needed for data storage． One＂mem＂essentially means a memory access to a 64 －bit word．（These totals don＇t include the time or space needed to parse the input or to format the output．）

Here is the overall structure：

```
#define o mems ++ /* count one mem */
#define oo mems +=2 /* count two mems */
#define ooo mems +=3 /* count three mems */
#define O "%" /* used for percent signs in format strings */
#define mod % /* used for percent signs denoting remainder in C */
#define max_level 10000 /* at most this many options in a solution */
#define max_cols 100000 /* at most this many items */
#define max_nodes 25000000 /* at most this many nonzero elements in the matrix */
#define bufsize ( }9*\mathrm{ max_cols +3) /* a buffer big enough to hold all item names */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "gb_flip.h"
    typedef unsigned int uint; /* a convenient abbreviation */
    typedef unsigned long long ullng; /* ditto */
```

 〈Type definitions 6〉;
 〈 Global variables 3\(\rangle\);
 \(\langle\) Subroutines 10〉;
 \(\operatorname{main}(\) int \(\operatorname{argc}, \mathbf{c h a r} * \operatorname{argv}[])\)
 \{
 register int \(c c, i, j, k, p, p p, q, r, t, c u r _n o d e, b e s t _i t m ;\)
 \(\langle\) Process the command line 4\(\rangle\);
 \(\langle\) Input the item names 14\(\rangle\);
 \(\langle\) Input the options 17\(\rangle\);
 if (vbose \& show_basics) 〈Report the successful completion of the input phase 21\(\rangle\);
 if (vbose \& show_tots) 〈Report the item totals 22\(\rangle\);
 imems \(=\) mems, mems \(=0\);
 \(\langle\) Solve the problem 23\(\rangle\);
 done: if (vbose \& show_tots) 〈Report the item totals 22\(\rangle\);
 if (vbose \& show_profile) 〈Print the profile 35\(\rangle\);
 if (vbose \& show_max_deg)

if (vbose \& show_basics) \{

count $\equiv 1 ?$ "": "s", imems,mems);
bytes $=$ last_itm $* \operatorname{sizeof}(\mathbf{i t e m})+$ last_node $* \operatorname{sizeof}($ node $)+$ maxl $* \operatorname{sizeof}(\mathbf{i n t})$;

fprintf (stderr, "ьccostь"O"lld\%\% . \n", (200 * cmems + mems $) /(2$ * mems $)$);
\}
\langle Close the files 5\rangle;
\}

3．You can control the amount of output，as well as certain properties of the algorithm，by specifying options on the command line：
－＇v \langle integer \rangle＇enables or disables various kinds of verbose output on stderr，given by binary codes such as show＿choices；
－＇m〈integer \rangle＇causes every m th solution to be output（the default is $m 0$ ，which merely counts them）；
－＇s \langle integer \rangle＇causes the algorithm to make random choices in key places（thus providing some variety， although the solutions are by no means uniformly random），and it also defines the seed for any random numbers that are used；
－＇d〈integer \rangle＇sets delta，which causes periodic state reports on stderr after the algorithm has performed approximately delta mems since the previous report（default 10000000000）；
－＇c \langle positive integer \rangle＇limits the levels on which choices are shown during verbose tracing；

- ＇C〈 positive integer \rangle＇limits the levels on which choices are shown in the periodic state reports；
- ＇l〈nonnegative integer 〉＇gives a lower limit，relative to the maximum level so far achieved，to the levels on which choices are shown during verbose tracing；
－＇t \langle positive integer \rangle＇causes the program to stop after this many solutions have been found；
- ＇T〈 integer \rangle＇sets timeout（which causes abrupt termination if mems $>$ timeout at the beginning of a level）；
- ＇S〈filename 〉＇to output a＂shape file＂that encodes the search tree．
\＃define show＿basics $1 \quad / *$ vbose code for basic stats；this is the default $* /$
\＃define show＿choices 2／＊vbose code for backtrack logging＊／
\＃define show＿details $4 \quad / *$ vbose code for further commentary $* /$
\＃define show＿profile $128 \quad / *$ vbose code to show the search tree profile＊／
\＃define show＿full＿state $256 \quad / *$ vbose code for complete state reports＊／
\＃define show＿tots 512 ／＊vbose code for reporting item totals at start and end＊／
\＃define show＿warnings 1024 ／＊vbose code for reporting options without primaries＊／
\＃define show＿max＿deg $2048 \quad$／＊vbose code for reporting maximum branching degree＊／
\langle Global variables 3$\rangle \equiv$
int random＿seed $=0 ; \quad / *$ seed for the random words of $g b _$rand $* /$
int randomizing；／＊has＇s＇been specified？＊／
int vbose $=$ show＿basics + show＿warnings $; \quad / *$ level of verbosity $* /$
int spacing；$\quad / *$ solution k is output if k is a multiple of spacing $* /$
int show＿choices＿max $=1000000 ; \quad / *$ above this level，show＿choices is ignored $* /$
int show＿choices＿gap $=1000000 ; \quad / *$ below level maxl - show＿choices＿gap，show＿details is ignored＊／
int show＿levels＿max $=1000000 ; \quad / *$ above this level，state reports stop $* /$
int $\operatorname{maxl}=0 ; \quad / *$ maximum level actually reached $* /$
char buf［bufsize］；／＊input buffer＊／
ullng count；／＊solutions found so far＊／
ullng options；$\quad / *$ options seen so far $* /$
ullng imems，mems，cmems，tmems；／＊mem counts＊／
ullng updates；／＊update counts＊／
ullng bytes；／＊memory used by main data structures＊／
ullng nodes；／＊total number of branch nodes initiated $* /$
ullng thresh $=10000000000 ; \quad / *$ report when mems exceeds this，if delta $\neq 0 * /$
ullng delta $=10000000000 ; \quad / *$ report every delta or so mems＊／
ullng maxcount $={ }^{\#} f f f f f f f f f f f f f f f f f ; \quad / *$ stop after finding this many solutions＊／
ullng timeout $={ }^{\#} 1 \mathrm{fffffffffffffff;} \quad$／＊give up after this many mems＊／
FILE $*$ shape＿file；$\quad / *$ file for optional output of search tree shape $* /$
char $*$ shape＿name；$\quad / *$ its name＊／
int maxdeg；$\quad / *$ the largest branching degree seen so far $* /$
See also sections 8 and 24 ．
This code is used in section 2 ．

4. If an option appears more than once on the command line, the first appearance takes precedence.
\langle Process the command line 4$\rangle \equiv$
```
    for \((j=\arg c-1, k=0 ; j ; j--)\)
        switch \((\operatorname{argv}[j][0])\) \{
        case 'v': \(k \mid=(\operatorname{sscanf}(\operatorname{argv}[j]+1, "\) " \(O\) "d", \&vbose \()-1)\); break;
        case \({ }^{\prime} \mathrm{m}^{\prime}: k \mid=(\operatorname{sscanf}(\operatorname{argv}[j]+1\), " "O"d", \&spacing \()-1)\); break;
        case 's': \(k \mid=\left(\operatorname{sscanf}\left(\operatorname{argv}[j]+1, " " O " \mathrm{~d} ", \& r a n d o m \_\right.\right.\)seed \(\left.)-1\right)\), randomizing \(=1\); break;
        case 'd': \(k \mid=(\operatorname{sscanf}(\operatorname{argv}[j]+1, " " O " l l d ", \& d e l t a)-1)\), thresh \(=\) delta; break;
        case 'c': \(k \mid=\left(\operatorname{sscanf}\left(\operatorname{argv}[j]+1, " " O " \mathrm{~d} ", \& s h o w \_c h o i c e s \_m a x\right)-1\right) ;\) break;
        case ' \(\mathrm{C}^{\prime}: k \mid=\left(\operatorname{sscanf}\left(\operatorname{argv}[j]+1, " " O " \mathrm{~d} ", \& s h o w \_l e v e l s \_m a x\right)-1\right) ;\) break;
        case ' \(l^{\prime}: k \mid=\left(\operatorname{sscanf}\left(\operatorname{argv}[j]+1, " " O " \mathrm{~d} ", \& s h o w \_c h o i c e s \_g a p\right)-1\right) ;\) break;
        case 't': \(k \mid=(\operatorname{sscanf}(\operatorname{argv}[j]+1, "\) "O"lld", \&maxcount) -1\() ;\) break;
        case 'T': \(k \mid=(\operatorname{sscanf}(\operatorname{argv}[j]+1, "\) "O"lld", \&timeout \()-1)\); break;
        case 'S': shape_name \(=\operatorname{argv}[j]+1\), shape_file \(=\) fopen (shape_name, " w ) ;
            if ( \(\neg\) shape_file)
```



```
            break;
        default: \(k=1 ; \quad / *\) unrecognized command-line option \(* /\)
    \}
    if \((k)\) \{
```



```
        \(\operatorname{exit}(-1)\);
    \}
    if (randomizing) gb_init_rand(random_seed);
```

This code is used in section 2.
5. \langle Close the files 5$\rangle \equiv$
if (shape_file) fclose(shape_file);
This code is used in section 2.
6. Data structures. Each item of the input matrix is represented by an item struct, and each option is represented as a list of node structs. There's one node for each nonzero entry in the matrix.

More precisely, the nodes of individual options appear sequentially, with "spacer" nodes between them. The nodes are also linked circularly with respect to each item, in doubly linked lists. The item lists each include a header node, but the option lists do not. Item header nodes are aligned with an item struct, which contains further info about the item.

Each node contains three important fields. Two are the pointers $u p$ and down of doubly linked lists, already mentioned. The third points directly to the item containing the node.

A "pointer" is an array index, not a C reference (because the latter would occupy 64 bits and waste cache space). The $c l$ array is for item structs, and the $n d$ array is for nodes. I assume that both of those arrays are small enough to be allocated statically. (Modifications of this program could do dynamic allocation if needed.) The header node corresponding to $c l[c]$ is $n d[c]$.

We count one mem for a simultaneous access to the $u p$ and down fields. I've added a spare field, so that each node occupies two octabytes.

Although the item-list pointers are called $u p$ and down, they need not correspond to actual positions of matrix entries. The elements of each item list can appear in any order, so that one option needn't be consistently "above" or "below" another. Indeed, when randomizing is set, we intentionally scramble each item list.

This program doesn't change the $i t m$ fields after they've first been set up. But the $u p$ and down fields will be changed frequently, although preserving relative order.

Exception: In the node $n d[c]$ that is the header for the list of item c, we use the $i t m$ field to hold the length of that list (excluding the header node itself). We also might use its spare field for special purposes. The alternative names len for $i t m$ and aux for spare are used in the code so that this nonstandard semantics will be more clear.

A spacer node has $i t m \leq 0$. Its $u p$ field points to the start of the preceding option; its down field points to the end of the following option. Thus it's easy to traverse an option circularly, in either direction.

If all options have length m, we can do without the spacers by simply working modulo m. But the majority of my applications have options of variable length, so I've decided not to use that trick.
[Historical note: An earlier version of this program, DLX0, was almost identical to this one except that it used doubly linked lists for the options as well as for the items. Thus it had two additional fields, left and right, in each node. When I wrote DLX1 I expected it to be a big improvement, because I thought there would be fewer memory accesses in all of the inner loops where options are being traversed. However, I failed to realize that the $i t m$ and right fields were both stored in the same octabyte; hence the cost per node is the same - and DLX1 actually performs a few more mems, as it handles the spacer node transitions! This additional mem cost is compensated by the smaller node size, hence greater likelihood of cache hits. But the gain from pure sequential allocation wasn't as great as I'd hoped.]

```
\#define len itm /* item list length (used in header nodes only) */
\#define aux spare /* an auxiliary quantity (used in header nodes only) */
\(\langle\) Type definitions 6\(\rangle \equiv\)
    typedef struct node_struct \{
        int up, down; /* predecessor and successor in item list \(* /\)
        int \(i t m ; \quad / *\) the item containing this node \(* /\)
        int spare; /* padding, not used in DLX1 */
    \} node;
See also section 7 .
7. Each item struct contains three fields: The name is the user-specified identifier; next and prev point to adjacent items, when this item is part of a doubly linked list.

As backtracking proceeds, nodes will be deleted from item lists when their option has been hidden by other options in the partial solution. But when backtracking is complete, the data structures will be restored to their original state.

We count one mem for a simultaneous access to the prev and next fields.
\(\langle\) Type definitions 6\(\rangle+\equiv\)
```

 typedef struct itm_struct {
    ```
        char name[8]; /* symbolic identification of the item, for printing */
        int prev, next; /* neighbors of this item */
    \} item;
8. 〈 Global variables 3\(\rangle+\equiv\)
node \(n d[\) max_nodes \(] ; \quad / *\) the master list of nodes \(* /\)
int last_node; \(\quad / *\) the first node in \(n d\) that's not yet used \(* /\)
item cl[max_cols +2\(] ; \quad / *\) the master list of items */
int second \(=\) max_cols; \(\quad / *\) boundary between primary and secondary items \(* /\)
int last_itm; /* the first item in cl that's not yet used \(* /\)
9. One item struct is called the root. It serves as the head of the list of items that need to be covered, and is identifiable by the fact that its name is empty.
\#define root \(0 \quad / * \operatorname{cl}[\) root \(]\) is the gateway to the unsettled items */
10. An option is identified not by name but by the names of the items it contains. Here is a routine that prints an option, given a pointer to any of its nodes. It also prints the position of the option in its item list.
\(\langle\) Subroutines 10\(\rangle \equiv\)
```

 void print_option(int p, FILE *stream)
 {
 register int k,q;
 if (}p<l\mathrm{ last_itm }\veep\geqlast_node \vee nd[p].itm \leq 0) {
 fprintf(stderr, "Illegal\sqcupoption}|"O"d!\n",p)
 return;
 }
 for (q=p; ;) {
 fprintf(stream, "ь"O".8s", cl[nd[q].itm].name);
 q++;
 if (nd[q].itm \leq0) q=nd[q].up; /* -nd[q].itm is actually the option number */
 if (q\equivp) break;
 }
 for (q=nd[nd[p].itm].down, k=1;q\not=p;k++) {
 if (q\equivnd[p].itm) {
 fprintf(stream, "\sqcup(?)\n"); return; /* option not in its item list! */
 } else q= nd [q].down;
 }
 fprintf(stream, "\sqcup("O"d
 }
void prow(int p)
{
print_option(p,stderr);
}

```
See also sections \(11,12,26,27,33\), and 34 .

This code is used in section 2 .
11. When I'm debugging, I might want to look at one of the current item lists.
\(\langle\) Subroutines 10\(\rangle+\equiv\)
void print_itm (int \(c\) )
\{
register int \(p\);
if \((c<\) root \(\vee c \geq\) last_itm \()\{\)
fprintf(stderr, "Illegal item \(_{\sqcup}\) " \(O\) " \(\left.\mathrm{d}!\backslash \mathrm{n} ", ~ c\right) ;\)
return;
\}
if \((c<\) second \()\)
 \(n d[c]\).len, \(c l[c l[c]\).prev].name, \(\operatorname{cl}[\operatorname{cl}[c]\).next \(]\).name \()\);

for \((p=n d[c]\).down \(; p \geq\) last_itm \(; p=n d[p]\).down \()\) prow \((p)\);
\}
12. Speaking of debugging, here's a routine to check if redundant parts of our data structure have gone awry.
\#define sanity_checking \(0 \quad / *\) set this to 1 if you suspect a bug */
\(\langle\) Subroutines 10\(\rangle+\equiv\)
void sanity (void)
\{ register int \(k, p, q, p p, q q, t ;\) for \((q=\) root,\(p=c l[q]\).next; ; \(q=p, p=c l[p]\).next \()\) \{
            if \((c l[p] . p r e v \neq q)\) fprintf \(\left(s t d e r r, " \operatorname{Bad}_{\sqcup}\right.\) prev \(\left._{\sqcup} \mathrm{field}_{\sqcup} \mathrm{at}_{\sqcup} \mathrm{itm}_{\sqcup} " O " .8 \mathrm{~s}!\backslash \mathrm{n} ", ~ c l[p] . n a m e\right) ;\)
            if ( \(p \equiv\) root) break;
            \(\langle\) Check item \(p 13\rangle\);
        \}
    \}
13. \(\langle\) Check item \(p 13\rangle \equiv\)
for \((q q=p, p p=n d[q q]\).down, \(k=0 ; ; q q=p p, p p=n d[p p]\).down, \(k++)\{\)

if \((p p \equiv p)\) break;
if \((n d[p p] . i t m \neq p)\) fprintf(stderr, "Bad \(_{\sqcup} \mathrm{itm}_{\sqcup} \mathrm{field}_{\sqcup} \mathrm{at}_{\sqcup}\) node \(\left._{\sqcup} " O " \mathrm{~d}!\backslash \mathrm{n} ", p p\right)\);
\}

This code is used in section 12.
14. Inputting the matrix. Brute force is the rule in this part of the code, whose goal is to parse and store the input data and to check its validity.
\#define panic (m)
\{ fprintf(stderr, ""O"s!\n"O"d:ப"O".99s\n", m, p, buf); exit(-666); \}
\(\langle\) Input the item names 14\(\rangle \equiv\)
if (max_nodes \(\leq 2 *\) max_cols) \{

        exit (-999);
    \} /* every item will want a header node and at least one other node */
    while (1) \{
        if ( \(\neg\) fgets (buf, bufsize, stdin)) break;

        for ( \(p=0 ;\) o, isspace (buf \([p]\) ); \(p++\) ) ;
        if (buf \([p] \equiv ' \mid, \vee \neg b u f[p])\) continue; \(\quad / *\) bypass comment or blank line \(* /\)
        last_itm \(=1\);
        break;
    \}
    if ( \(\neg\) last_itm) panic("No \({ }^{\text {items") }) ; ~}\)
    for ( \(; o, b u f[p] ;)\) \{
        for \((j=0 ; j<8 \wedge(o, \neg\) isspace \((\) buf \([p+j])) ; j++)\{\)

            \(o\), cl[last_itm].name \([j]=\) buf \([p+j]\);
        \}
        if \((j \equiv 8 \wedge \neg\) isspace \((b u f[p+j]))\) panic("Item name \(_{\sqcup}\) too \(_{\sqcup}\) long");
        \(\langle\) Check for duplicate item name 15\(\rangle\);
        \(\langle\) Initialize last_itm to a new item with an empty list 16\(\rangle\);
        for \((p+=j+1 ; ~ o\), isspace \((b u f[p]) ; p++)\);
        if (buf \([p] \equiv\) '|') \{

            second \(=\) last_itm;
            for \((p++\); o, isspace \((b u f[p]) ; p++)\);
        \}
    \}
    if \((\) second \(\equiv\) max_cols \()\) second \(=\) last_itm;
    oo, cl \([\) last_itm \(]\). prev \(=\) last_itm -1, cl[last_itm -1\(] . n e x t=l a s t \_i t m ;\)
    oo, cl[second].prev \(=\) last_itm, cl[last_itm]. \(n e x t=\) second;
        \(/ *\) this sequence works properly whether or not second \(=\) last_itm \(* /\)
    oo, cl[root \(].\) prev \(=\) second \(-1, c l[\) second -1\(] . n e x t=\) root ;
    last_node \(=\) last_itm; \(\quad / *\) reserve all the header nodes and the first spacer \(* /\)
        /* we have \(n d[\) last_node]. itm \(=0\) in the first spacer \(* /\)

This code is used in section 2.
15. \(\langle\) Check for duplicate item name 15\(\rangle \equiv\)
for \((k=1 ; ~ o, \operatorname{strncmp}(c l[k] . n a m e\), cl[last_itm].name, 8\() ; k++)\);
if \(\left(k<\right.\) last_itm) panic ("Duplicate item \(_{\sqcup}\) name");
This code is used in section 14.
16. 〈Initialize last_itm to a new item with an empty list 16\(\rangle \equiv\)
if (last_itm > max_cols) panic("Too■many」items");
oo, cl[last_itm -1\(] . n e x t=l a s t \_i t m, c l\left[l a s t \_i t m\right] . p r e v=l a s t \_i t m ~-1 ; ~ / * n d\left[l a s t \_i t m\right] . l e n ~=0 ~ * / ~\)
\(o, n d[\) last_itm \(] . u p=n d\left[l a s t \_i t m\right] . d o w n=\) last_itm;
last_itm ++;
This code is used in section 14.
17. I'm putting the option number into the spacer that follows it, as a possible debugging aid. But the program doesn't currently use that information.
\(\langle\) Input the options 17\(\rangle \equiv\)
while (1) \{
if ( \(\neg\) fgets (buf, bufsize, stdin)) break;
if \(\left(o, b u f[p=\operatorname{strlen}(b u f)-1] \neq \prime \backslash n^{\prime}\right)\) panic ("Option line \(_{\sqcup}\) too \(_{\sqcup}\) long" \()\);
for ( \(p=0\); o, isspace (buf \([p]\) ); \(p++\) ) ;
if \((b u f[p] \equiv ' \mid ' \vee \neg b u f[p])\) continue; \(\quad / *\) bypass comment or blank line \(* /\)
\(i=\) last_node \(; \quad / *\) remember the spacer at the left of this option \(* /\)
for \((p p=0 ;\) buf \([p] ;)\) \{
for \((j=0 ; j<8 \wedge(o, \neg i s s p a c e(b u f[p+j])) ; j++)\) o, cl[last_itm].name \([j]=b u f[p+j]\);
if \((j \equiv 8 \wedge \neg\) isspace \((\) buf \([p+j]))\) panic ("Item name \(_{\sqcup}\) too \(_{\sqcup}\) long");
if \((j<8)\) o, cl[last_itm].name \([j]={ }^{\prime} \backslash 0^{\prime}\);
\(\langle\) Create a node for the item named in buf \([p] 18\rangle\);
for \((p+=j+1 ; ~ o\), isspace (buf \([p]) ; p++)\);
\}
if \((\neg p p)\) \{

while (last_node > i) \{
\(\langle\) Remove last_node from its item list 20\(\rangle\);
last_node--;
\}
\} else \{
o, nd \([i]\). down \(=\) last_node;
last_node ++; /* create the next spacer */
if (last_node \(\equiv\) max_nodes) panic("Too \(\sqcup\) many \(\sqcup\) nodes");
options ++;
\(o, n d[\) last_node]. \(u p=i+1\);
o, nd[last_node].itm \(=-\) options;
\}
\}
This code is used in section 2.
18. \(\langle\) Create a node for the item named in \(b u f[p] 18\rangle \equiv\)
for \((k=0 ; \quad\), strncmp (cl[k].name, cl[last_itm].name, 8\() ; k++\) );
if \(\left(k \equiv\right.\) last_itm panic ("Unknown item \(_{\sqcup}\) name");
if \((o, n d[k] . a u x \geq i)\) panic ("Duplicate item \(_{\sqcup}\) name \(_{\sqcup}\) in \(_{\sqcup}\) this \({ }_{\sqcup}\) option");
last_node ++;
if (last_node \(\equiv\) max_nodes) panic("Too \(\sqcup\) many \(\sqcup\) nodes");
o, \(n d[\) last_node].itm \(=k\);
if \((k<\) second) \(p p=1\);
\(o, t=n d[k] . l e n+1\);
\(\langle\) Insert node last_node into the list for item \(k 19\rangle\);
This code is used in section 17 .
19. Insertion of a new node is simple, unless we're randomizing. In the latter case, we want to put the node into a random position of the list.

We store the position of the new node into \(n d[k] . a u x\), so that the test for duplicate items above will be correct.

As in other programs developed for TAOCP, I assume that four mems are consumed when 31 random bits are being generated by any of the GB_FLIP routines.
```

\langle Insert node last_node into the list for item $k 19\rangle \equiv$
$o, n d[k] . l e n=t ; \quad / *$ store the new length of the list $* /$
$n d[k] . a u x=$ last_node $; \quad / *$ no mem charge for aux after len $* /$
if (\neg randomizing) \{
$o, r=n d[k] . u p ; \quad / *$ the "bottom" node of the item list */
ooo, nd $[r]$. down $=n d[k] . u p=$ last_node $, n d[$ last_node $] . u p=r, n d[$ last_node $] . d o w n=k ;$
\} else \{
mems $+=4, t=g b_{-}$unif_rand $(t) ; \quad / *$ choose a random number of nodes to skip past $* /$
for $(o, r=k ; t ; o, r=n d[r]$.down, $t--)$;
ooo, $q=n d[r]$.up, nd $[q]$.down $=n d[r]$.up $=$ last_node;
$o, n d[$ last_node $] . u p=q, n d[$ last_node $] . d o w n=r ;$
\}
This code is used in section 18.

```
20. 〈Remove last_node from its item list 20\(\rangle \equiv\)
\(o, k=n d[\) last_node].itm;
oo, \(n d[k]\).len,\(-- n d[k]\).aux \(=i-1\);
\(o, q=n d[\) last_node \(] . u p, r=n d[\) last_node \(] . d o w n ;\)
\(o o, n d[q] . d o w n=r, n d[r] . u p=q ;\)
This code is used in section 17.
21. 〈Report the successful completion of the input phase 21\(\rangle \equiv\)
 options, second - 1, last_itm - second, last_node - last_itm);
This code is used in section 2 .
22. The item lengths after input should agree with the item lengths after this program has finished. I print them (on request), in order to provide some reassurance that the algorithm isn't badly screwed up.
\(\langle\) Report the item totals 22\(\rangle \equiv\)
\{
        fprintf(stderr, "Item totals:" \(^{\text {) }}\)
    for \((k=1 ; k<\) last_itm \(; k++)\{\)
            if \((k \equiv\) second \()\) fprintf (stderr, "பا");
            fprintf(stderr, "ப"O"d", nd [k].len);
    \}
    fprintf(stderr, "\n");
    \}

This code is used in section 2.
23. The dancing. Our strategy for generating all exact covers will be to repeatedly choose always the item that appears to be hardest to cover, namely the item with shortest list, from all items that still need to be covered. And we explore all possibilities via depth-first search.

The neat part of this algorithm is the way the lists are maintained. Depth-first search means last-in-firstout maintenance of data structures; and it turns out that we need no auxiliary tables to undelete elements from lists when backing up. The nodes removed from doubly linked lists remember their former neighbors, because we do no garbage collection.

The basic operation is "covering an item." This means removing it from the list of items needing to be covered, and "hiding" its options: removing nodes from other lists whenever they belong to an option of a node in this item's list.
```

<Solve the problem 23\rangle\equiv
level = 0;
forward: nodes ++;
if (vbose \& show_profile) profile[level]++;
if (sanity_checking) sanity();
< Do special things if enough mems have accumulated 25\rangle;
<Set best_itm to the best item for branching 30\rangle;
cover(best_itm);
oo,cur_node = choice[level] =nd[best_itm].down;
advance: if (cur_node \equivbest_itm) goto backup;
if ((vbose \& show_choices)^ level < show_choices_max) {
fprintf(stderr,"L"O"d:", level);
print_option(cur_node, stderr);
}
< Cover all other items of cur_node 28\rangle;
if (o, cl[root].next \equivroot) < Visit a solution and goto recover 31\rangle;
if (++level > maxl) {
if (level }\geq\mathrm{ max_level) {
fprintf(stderr, "Too\&many\sqcuplevels!\n");
exit(-4);
}
maxl = level;
}
goto forward;
backup: uncover(best_itm);
if (level \equiv0) goto done;
level --;
oo,}\mathrm{ cur_node = choice[level],best_itm = nd[cur_node].itm;
recover: <Uncover all other items of cur_node 29>;
oo,cur_node = choice[level] = nd [cur_node].down; goto advance;

```

This code is used in section 2.
24. 〈Global variables 3\(\rangle+\equiv\)
int level; \(\quad / *\) number of choices in current partial solution \(* /\)
int choice[max_level]; /* the node chosen on each level \(* /\)
ullng profile[max_level]; /* number of search tree nodes on each level */
25. 〈Do special things if enough mems have accumulated 25\(\rangle \equiv\)
if \((\) delta \(\wedge(m e m s \geq\) thresh \())\) \{ thresh \(+=\) delta; if (vbose \& show_full_state) print_state(); else print_progress();
\}
if (mems \(\geq\) timeout ) \{
fprintf(stderr, "TIMEOUT!\n"); goto done;
\}
This code is used in section 23.
26. When an option is hidden, it leaves all lists except the list of the item that is being covered. Thus a node is never removed from a list twice.

Note: I could have saved some mems in this routine, and in similar routines below, by not updating the len fields of secondary items. But I chose not to make such an optimization because it might well be misleading: The insertion of a mem-free new branch 'if \((c c<s e c o n d)\) ' can be costly since it makes hardware branch prediction less effective. Furthermore those len fields are in item header nodes, which tend to remain in cache memory where they're readily accessible.
```

\langle Subroutines 10$\rangle+\equiv$
void $\operatorname{cover}($ int c)
\{
register int $c c, l, r, r r, n n, u u, d d, t$;
$o, l=c l[c]$. prev,$r=c l[c] . n e x t ;$
oo, $c l[l] . n e x t=r, c l[r] . p r e v=l ;$
updates ++ ;
for $(o, r r=n d[c]$.down; $r r \geq$ last_itm; o, $r r=n d[r r]$.down $)$
for $(n n=r r+1 ; n n \neq r r ;)$ \{
$o, u u=n d[n n] . u p, d d=n d[n n] . d o w n ;$
$o, c c=n d[n n] . i t m ;$
if $(c c \leq 0)\{$
$n n=u u$;
continue;
\}
oo, $n d[u u] . d o w n=d d, n d[d d] . u p=u u ;$
updates ++ ;
$o, t=n d[c c] . l e n-1 ;$
$o, n d[c c] . l e n=t ;$
$n n+$;
\}
\}

```
27. I used to think that it was important to uncover an item by processing its options from bottom to top, since covering was done from top to bottom. But while writing this program I realized that, amazingly, no harm is done if the options are processed again in the same order. So I'll go downward again, just to prove the point. Whether we go up or down, the pointers execute an exquisitely choreographed dance that returns them almost magically to their former state.
```

<Subroutines 10\rangle+\equiv
void uncover(int c)
{
register int cc,l,r, rr, nn, uu, dd, t;
for (o,rr = nd [c].down; rr \geq last_itm; o, rr = nd [rr].down)
for (}nn=rr+1;nn\not=rr;)
o,uu = nd[nn].up,dd=nd[nn].down;
o,cc=nd[nn].itm;
if (cc\leq0) {
nn=uu;
continue;
}
oo,nd[uu].down = nd [dd].up = nn;
o,t=nd[cc].len + 1;
o,nd[cc].len = t;
nn++;
}
o,l=cl[c].prev,r=cl[c].next;
oo,cl[l].next = cl[r].prev =c;
}

```
28. 〈Cover all other items of cur_node 28\(\rangle \equiv\)
    for \((p p=\) cur_node \(+1 ; p p \neq\) cur_node; ) \{
    \(o, c c=n d[p p] . i t m ;\)
    if \((c c \leq 0) ~ o, p p=n d[p p] . u p\);
    else cover ( \(c c\) ), \(p p++\);
    \}

This code is used in section 23.
29. When I learned that the covering of individual items can be done safely in various orders, I almost convinced myself that I'd be able to blithely ignore the ordering - I could apparently undo the covering of item \(a\) then \(b\) by uncovering \(a\) first. However, that argument is fallacious: When \(a\) is uncovered, it can resuscitate elements in item \(b\) that would mess up the uncovering of \(b\). The choreography is delicate indeed.
(Incidentally, the cover and uncover routines both went to the right. That was okay. But we must then go left here.)
\(\langle\) Uncover all other items of cur_node 29\(\rangle \equiv\)
for \((p p=\) cur_node \(-1 ; p p \neq\) cur_node; ) \{
\(o, c c=n d[p p] . i t m ;\)
if \((c c \leq 0) ~ o, p p=n d[p p]\).down;
else uncover ( \(c c\) ), \(p p-\);
\}
This code is used in section 23.
30. The "best item" is considered to be an item that minimizes the number of remaining choices. If there are several candidates, we choose the leftmost - unless we're randomizing, in which case we select one of them at random.
```

Set best_itm to the best item for branching 30\rangle\equiv
tmems = mems,t= max_nodes;
if ((vbose \& show_details) ^ level < show_choices_max }\wedge level \geq maxl - show_choices_gap)
fprintf(stderr, "Levelப"O"d:", level);
for (o,k=cl[root].next; t}\wedgek\not=\mathrm{ root; o, k= cl[k].next) {
if ((vbose \& show_details) ^ level < show_choices_max ^ level \geq maxl - show_choices_gap)
fprintf(stderr, "ப"O".8s("O"d)", cl[k].name,nd[k].len);
if (o,nd[k].len \leqt) {
if (nd[k].len <t) best_itm = k,t=nd[k].len, p=1;
else {
p++; /* this many items achieve the min */
if (randomizing ^(mems +=4, \neggb_unif_rand (p))) best_itm = k;
}
}
}
if ((vbose \& show_details) ^ level < show_choices_max ^ level \geqmaxl - show_choices_gap)
fprintf(stderr, "чbranching\sqcupon
if (t> maxdeg) maxdeg = t;
if (shape_file) {
fprintf(shape_fle, ""O"d
fflush(shape_file);
}
cmems += mems - tmems;
This code is used in section 23.

```
31. 〈Visit a solution and goto recover 31\(\rangle \equiv\)
    \{
        nodes \(++; \quad / *\) a solution is a special node, see 7.2.2-(4) */
        if \((\) level \(+1>\operatorname{maxl})\{\)
            if (level \(+1 \geq\) max_level) \{
                fprintf (stderr, "Too manyபlevels! \n");
                exit (-5);
            \}
            maxl \(=\) level \(+1 ;\)
        \}
        if (vbose \& show_profile) profile \([\) level +1\(]++\);
        if (shape_file) \{
            fprintf (shape_file, "sol\n"); fflush(shape_file);
        \}
        \(\langle\) Record solution and goto recover 32\(\rangle\);
    \}

This code is used in section 23.
```

32. \langle Record solution and goto recover 32$\rangle \equiv$
\{
count ++;
if $($ spacing $\wedge($ count \bmod spacing $\equiv 0))$ \{
printf(""O"lld:\n", count);
for $(k=0 ; k \leq$ level $; k++$) print_option(choice $[k]$, stdout);
fflush(stdout);
\}
if (count \geq maxcount) goto done;
goto recover;
\}
This code is used in section 31 .
33. 〈Subroutines 10$\rangle+\equiv$ void print_state(void) \{
register int l;
fprintf (stderr, "Current ${ }_{\sqcup}$ state $_{\sqcup}\left(\right.$ level $_{\sqcup}$ " O "d) : $\backslash \mathrm{n}$ ", level);
for $(l=0 ; l<$ level $; l++)\{$
print_option(choice [l], stderr);
if $(l \geq$ show_levels_max $)$ \{
fprintf (stderr, "ь...\n");
break;
\}
\}
```

```

 mems, maxl);
 \}
    ```
34. During a long run, it's helpful to have some way to measure progress. The following routine prints a string that indicates roughly where we are in the search tree. The string consists of character pairs, separated by blanks, where each character pair represents a branch of the search tree. When a node has \(d\) descendants and we are working on the \(k\) th, the two characters respectively represent \(k\) and \(d\) in a simple code; namely, the values \(0,1, \ldots, 61\) are denoted by
\[
0,1, \ldots, 9, a, b, \ldots, z, A, B, \ldots, z
\]

All values greater than 61 are shown as ' \(*\) '. Notice that as computation proceeds, this string will increase lexicographically.

Following that string, a fractional estimate of total progress is computed, based on the naïve assumption that the search tree has a uniform branching structure. If the tree consists of a single node, this estimate is .5 ; otherwise, if the first choice is ' \(k\) of \(d\) ', the estimate is \((k-1) / d\) plus \(1 / d\) times the recursively evaluated estimate for the \(k\) th subtree. (This estimate might obviously be very misleading, in some cases, but at least it tends to grow monotonically.)
```

<Subroutines 10\rangle+\equiv
void print_progress(void)
{
register int l, k,d, c, p;
register double f,fd;
fprintf(stderr, "\sqcupafter "O"lld
for (}f=0.0,fd=1.0,l=0;l<level;l++)
c=nd[choice[l]].itm, d=nd[c].len;
for (k=1,p=nd[c].down; p}\not=\mathrm{ choice [l]; k++,p=nd[p].down);
fd*=d,f+=(k-1)/fd; /* choice l is k of d*/
fprintf(stderr, "ч"O"с"O"с", k< 10?'0' + k:k<36?'а' + k-10:k<62?'A' + k - 36 :'*',
d<10? '0' + d:d<36?'а' +d-10:d<62 ?'A' + d-36 : '*');
if (l\geqshow_levels_max) {
fprintf(stderr, "...");
break;
}
}
fprintf(stderr, "ь"O".5f\n", f+0.5/fd);
}

```
35. \(\langle\) Print the profile 35\(\rangle \equiv\)
    \{
        fprintf(stderr, "Profile: \n");

    \}

This code is used in section 2.

\section*{36. Index.}
advance: \(\underline{23}\).
argc: \(\underline{2}, 4\).
argv: \(\underline{2}, 4\).
aux: \(\underline{6}, 18,19,20\).
backup: \(\underline{23 .}\)
best_itm: \(\underline{2}, 23,30\).
buf: \(\underline{3}, 14,17\).
bufsize: 2, 3, 14, 17.
bytes: 2, \(\underline{3}\).
\(c: \quad 11, \underline{26}, \underline{27}, \underline{34}\).
cc: 2 \(, \underline{26}, \underline{27}, 28,29\).
choice: 23, 24, 32, 33, 34.
\(c l: \quad 6, \underline{8}, 9,10,11,12,13,14,15,16,17,18\), \(23,26,27,30\).
cmems: 2, \(\underline{3}, 30\).
count: 2, \({ }^{3}, 32,33,34\).
cover: 23, 26, 28, 29.
cur_node: \(\underline{2}, 23,28,29\).
\(d: \quad 34\).
\(d d: \quad 26, \underline{27}\).
delta: \(\underline{3}, 4,25\).
done: \(\underline{2}, 23,25,32\).
down: \(\underline{6}, 10,11,13,16,17,19,20,23,26\), 27, 29, 34.
exit: 4, 14, 23, 31.
\(f: 34\).
fclose: 5.
\(f d: \quad \underline{34}\).
fflush: 30, 31, 32.
fgets: 14, 17.
fopen: 4.
forward: \(\underline{23}\).
fprintf: \(2,4,10,11,12,13,14,17,21,22,23\), \(25,30,31,33,34,35\).
gb_init_rand: 4.
gb_rand: 3.
gb_unif_rand: 19, 30.
\(i\) : 2 .
imems: 2, \(\underline{3}\).
isspace: 14, 17.
item: 2, \(\underline{7}, 8,9\).
itm: \(\underline{6}, 10,13,14,17,18,20,23,26,27,28,29,34\).
itm_struct: \(\underline{7}\).
\(j: \quad \underline{2}\).
\(k: \underline{2}, \underline{10}, \underline{12}, \underline{34}\).
\(l: \underline{26}, \underline{27}, \underline{33}, \underline{34}\).
last_itm: \(2, \underline{8}, 10,11,14,15,16,17,18,21\), \(22,26,27\).
last_node: \(2, \underline{8}, 10,14,17,18,19,20,21\).
left: 6.
len: \(\underline{6}, 10,11,13,16,18,19,20,22,26,27,30,34\).
level: 23, 24, 30, 31, 32, 33, 34, 35.
main: 2 .
max_cols: 2, 8, 14, 16.
max_level: \(\underline{2}, 23,24,31\).
max_nodes: \(\underline{2}, 8,14,17,18,30\).
maxcount: 3, 4, 32 .
maxdeg: 2, \(\underline{3}, 30\).
maxl: 2, \(\underline{3}, 23,30,31,33,35\).
mems: 2, \(\underline{3}, 19,25,30,33,34\).
\(\bmod : \underline{2}, 32\).
name: \(\quad \underline{7}, 9,10,11,12,13,14,15,17,18,30\).
\(n d: \quad 6, \underline{8}, 10,11,13,14,16,17,18,19,20,22\), \(23,26,27,28,29,30,34\).
next: \(\quad \underline{7}, 11,12,14,16,23,26,27,30\).
\(n n:\) 26, 27 .
node: \(2, \underline{6}, 8\).
node_struct: \(\underline{6}\).
nodes: 2, 3, 23, 31 .
\(O\) : 2 .
\(o: \quad \underline{2}\).
oo: \(\underline{2}, 14,16,20,23,26,27\).
ooo: \(\underline{2}, 19\).
options: \(\underline{3}, 17,21\).
p: \(\quad \underline{2}, \underline{10}, \underline{11}, \underline{12}, \underline{34}\).
panic: 14, 15, 16, 17, 18.
\(p p: \quad \underline{2}, \underline{12}, 13,17,18,28,29\).
prev: \(\underline{7}, 11,12,14,16,26,27\).
print_itm: 11.
print_option: 10, 23, 32, 33.
print_progress: 25, \(\underline{34}\).
print_state: 25, 33.
printf: 32.
profile: 23, 24, 31, 35.
prow: 10, 11.
\(q: \quad \underline{2}, \underline{10}, \underline{12}\).
\(q q: \quad \underline{12}, 13\).
\(r: \underline{2}, \underline{26}, \underline{27}\).
random_seed: \(3,4\).
randomizing: \(\underline{3}, 4,6,19,30\).
recover: 23, 32 .
right: 6.
root: \(\underline{9}, 11,12,14,23,30\).
\(r r: ~ \underline{26}, \underline{27}\).
sanity: 12, 23.
sanity_checking: 12, 23.
second: \(\underline{8}, 11,14,18,21,22,26\).
shape_file: \(\underline{3}, 4,5,30,31\).
shape_name: \(\underline{3}, 4\).
show_basics: 2, \(\underline{3}\).
show_choices: \(\underline{3}, 23\).
show_choices_gap: \(\underline{3}, 4,30\).
show_choices_max: \(\underline{3}, 4,23,30\).
show_details: \(\underline{3}, 30\).
show_full_state: \(\underline{3}, 25\).
show_levels_max: \(\underline{3}, 4,33,34\).
show_max_deg: 2, \(\mathbf{3}^{\text {. }}\)
show_profile: 2, \(\underline{3}, 23,31\).
show_tots: 2, \(\underline{3}^{\text {. }}\)
show_warnings: \(\underline{3}, 17\).
spacing: \(\underline{3}, 4,32\).
spare: \(\underline{6}\).
sscanf: 4.
stderr: \(2,3,4,10,11,12,13,14,17,21,22\),
\(23,25,30,31,33,34,35\).
stdin: 1, 14, 17.
stdout: 32.
stream: 10.
strlen: 14, 17.
strncmp: 15, 18.
\(t: \underline{2}, \underline{12}, \underline{26}, \underline{27}\).
thresh: 3, 4, 25.
timeout: \(\underline{3}, 4,25\).
tmems: \(\underline{3}, 30\).
uint: 2 .
ullng: \(\underline{2}, 3,24\).
uncover: 23, 27, 29.
\(u p: \quad \underline{6}, 10,13,16,17,19,20,26,27,28\).
updates: 2, \(\underline{3}, 26\).
uu: 26, \(\underline{27}\).
vbose: \(2, \underline{3}, 4,17,23,25,30,31\).

〈Check for duplicate item name 15\(\rangle\) Used in section 14.
\(\langle\) Check item \(p\) 13〉 Used in section 12.
\(\langle\) Close the files 5〉 Used in section 2.
〈Cover all other items of cur＿node 28〉 Used in section 23.
\(\langle\) Create a node for the item named in buf \([p] 18\rangle\) Used in section 17.
〈Do special things if enough mems have accumulated 25\(\rangle\) Used in section 23.
\(\langle\) Global variables \(3,8,24\rangle\) Used in section 2.
〈Initialize last＿itm to a new item with an empty list 16〉 Used in section 14.
〈Input the item names 14〉 Used in section 2.
〈Input the options 17〉 Used in section 2.
〈Insert node last＿node into the list for item \(k\) 19〉 Used in section 18.
\(\langle\) Print the profile 35\(\rangle\) Used in section 2.
\(\langle\) Process the command line 4\(\rangle\) Used in section 2.
\(\langle\) Record solution and goto recover 32\(\rangle\) Used in section 31.
〈Remove last＿node from its item list 20\(\rangle\) Used in section 17.
\(\langle\) Report the item totals 22\(\rangle\) Used in section 2.
\(\langle\) Report the successful completion of the input phase 21\(\rangle\) Used in section 2.
\(\langle\) Set best＿itm to the best item for branching 30\(\rangle\) Used in section 23.
〈Solve the problem 23〉 Used in section 2.
\(\langle\) Subroutines 10，11，12，26，27，33，34〉 Used in section 2.
\(\langle\) Type definitions 6，7〉 Used in section 2.
〈Uncover all other items of cur＿node 29〉 Used in section 23.
〈Visit a solution and goto recover 31\(\rangle\) Used in section 23.

\section*{DLX1}
Section Page
Intro ..... 1
Data structures ..... 6
Inputting the matrix ..... 14
The dancing ..... 23 ..... 12
Index ..... 36 ..... 18```

